Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 395(1): 1-20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041000

RESUMEN

The digestive system structure in pre-zoea and zoea I larvae of the red king crab Paralithodes camtschaticus has been examined. During this development period, the digestive system consists of an esophagus, a stomach, a midgut (where the hepatopancreas ducts open), and a hindgut. The esophagus begins from the oral slit on the animal's ventral side and extends vertically up to the junction with the cardiac stomach. The latter is followed by the pyloric stomach. At the stages under study, crabs have a cardiac-pyloric valve and a pyloric filter in the stomach already developed. The midgut begins with an expansion in the cephalothorax, enters the pleon, grows narrower there, and extends to somite 3 of pleon. The hepatopancreas is represented by a symmetrical paired gland which occupies almost the entire cephalothorax space and opens with its ducts at the junction of the pyloric stomach with the midgut. The hepatopancreas is divided into the anterior and posterior lobes. At the pre-zoea stage, the anterior lobes are large and filled with yolk. At the zoea I stage, the anterior lobes are smaller relative to the entire hepatopancreas, and the posterior lobes increase and form tubular outgrowths. It has been shown that during the transition from pre-zoea to zoea I, the number of mitochondria in enterocytes increases and a peritrophic membrane forms in the midgut. These changes are probably associated with the transition to independent living and feeding.


Asunto(s)
Anomuros , Animales , Larva , Sulfasalazina , Sistema Digestivo , Estómago
2.
Genes (Basel) ; 12(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440466

RESUMEN

Mesodermal cells of holothurian Eupentacta fraudatrix can transdifferentiate into enterocytes during the regeneration of the digestive system. In this study, we investigated the expression of several genes involved in gut regeneration in E. fraudatrix. Moreover, the localization of progenitor cells of coelomocytes, juvenile cells, and their participation in the formation of the luminal epithelium of the digestive tube were studied. It was shown that Piwi-positive cells were not involved in the formation of the luminal epithelium of the digestive tube. Ef-72 kDa type IV collagenase and Ef-MMP16 had an individual expression profile and possibly different functions. The Ef-tensilin3 gene exhibited the highest expression and indicates its potential role in regeneration. Ef-Sox9/10 and Ef-Sox17 in E. fraudatrix may participate in the mechanism of transdifferentiation of coelomic epithelial cells. Their transcripts mark the cells that plunge into the connective tissue of the gut anlage and give rise to enterocytes. Ef-Sox9/10 probably controls the switching of mesodermal cells to the enterocyte phenotype, while Ef-Sox17 may be involved in the regulation of the initial stages of transdifferentiation.


Asunto(s)
Sistema Digestivo/crecimiento & desarrollo , Tracto Gastrointestinal/crecimiento & desarrollo , Regeneración/genética , Pepinos de Mar/genética , Animales , Transdiferenciación Celular/genética , Sistema Digestivo/metabolismo , Células Epiteliales/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Metaloproteinasas de la Matriz/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , ARN Interferente Pequeño/genética , Factores de Transcripción SOX/genética , Pepinos de Mar/crecimiento & desarrollo , Inhibidores Tisulares de Metaloproteinasas/genética
3.
PLoS One ; 12(7): e0182001, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28753616

RESUMEN

The structure and regeneration of the digestive system in the crinoid Himerometra robustipinna (Carpenter, 1881) were studied. The gut comprises a spiral tube forming radial lateral processes, which gives it a five-lobed shape. The digestive tube consists of three segments: esophagus, intestine, and rectum. The epithelia of these segments have different cell compositions. Regeneration of the gut after autotomy of the visceral mass progresses very rapidly. Within 6 h after autotomy, an aggregation consisting of amoebocytes, coelomic epithelial cells and juxtaligamental cells (neurosecretory neurons) forms on the inner surface of the skeletal calyx. At 12 h post-autotomy, transdifferentiation of the juxtaligamental cells starts. At 24 h post-autotomy these cells undergo a mesenchymal-epithelial-like transition, resulting in the formation of the luminal epithelium of the gut. Specialization of the intestinal epithelial cells begins on day 2 post-autotomy. At this stage animals acquire the mouth and anal opening. On day 4 post-autotomy the height of both the enterocytes and the visceral mass gradually increases. Proliferation does not play any noticeable role in gut regeneration. The immersion of animals in a 10-7 M solution of colchicine neither stopped formation of the lost structures nor caused accumulation of mitoses in tissues. Weakly EdU-labeled nuclei were observed in the gut only on day 2 post-autotomy and were not detected at later regeneration stages. Single mitotically dividing cells were recorded during the same period. It is concluded that juxtaligamental cells play a major role in gut regeneration in H. robustipinna. The main mechanisms of morphogenesis are cell migration and transdifferentiation.


Asunto(s)
Transdiferenciación Celular , Equinodermos/citología , Equinodermos/fisiología , Tracto Gastrointestinal/fisiología , Sistemas Neurosecretores/citología , Regeneración/fisiología , Animales , Transdiferenciación Celular/efectos de los fármacos , Colchicina/farmacología , ADN/biosíntesis , Equinodermos/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/ultraestructura , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/ultraestructura , Imagenología Tridimensional , Mitosis/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Regeneración/efectos de los fármacos , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...